Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana.
نویسندگان
چکیده
The plant-signaling molecules salicylic acid (SA) and jasmonic acid (JA) play an important role in induced disease resistance pathways. Cross-talk between SA- and JA-dependent pathways can result in inhibition of JA-mediated defense responses. We investigated possible antagonistic interactions between the SA-dependent systemic acquired resistance (SAR) pathway, which is induced upon pathogen infection, and the JA-dependent induced systemic resistance (ISR) pathway, which is triggered by nonpathogenic Pseudomonas rhizobacteria. In Arabidopsis thaliana, SAR and ISR are effective against a broad spectrum of pathogens, including the foliar pathogen Pseudomonas syringae pv. tomato (Pst). Simultaneous activation of SAR and ISR resulted in an additive effect on the level of induced protection against Pst. In Arabidopsis genotypes that are blocked in either SAR or ISR, this additive effect was not evident. Moreover, induction of ISR did not affect the expression of the SAR marker gene PR-1 in plants expressing SAR. Together, these observations demonstrate that the SAR and the ISR pathway are compatible and that there is no significant cross-talk between these pathways. SAR and ISR both require the key regulatory protein NPR1. Plants expressing both types of induced resistance did not show elevated Npr1 transcript levels, indicating that the constitutive level of NPR1 is sufficient to facilitate simultaneous expression of SAR and ISR. These results suggest that the enhanced level of protection is established through parallel activation of complementary, NPR1-dependent defense responses that are both active against Pst. Therefore, combining SAR and ISR provides an attractive tool for the improvement of disease control.
منابع مشابه
Coordinated plant defense responses in Arabidopsis revealed by microarray analysis.
Disease resistance is associated with a plant defense response that involves an integrated set of signal transduction pathways. Changes in the expression patterns of 2,375 selected genes were examined simultaneously by cDNA microarray analysis in Arabidopsis thaliana after inoculation with an incompatible fungal pathogen Alternaria brassicicola or treatment with the defense-related signaling mo...
متن کاملNegative cross-talk between salicylate- and jasmonate-mediated pathways in the Wassilewskija ecotype of Arabidopsis thaliana.
Plants often respond to attack by insect herbivores and necrotrophic pathogens with induction of jasmonate-dependent resistance traits, but respond to attack by biotrophic pathogens with induction of salicylate-dependent resistance traits. To assess the degree to which the jasmonate- and salicylate-dependent pathways interact, we compared pathogenesis-related protein activity and bacterial perf...
متن کاملThe Innate Immune Signaling System as a Regulator of Disease Resistance and Induced Systemic Resistance Activity Against Verticillium dahliae.
In the last decades, the plant innate immune responses against pathogens have been extensively studied, while biocontrol interactions between soilborne fungal pathogens and their hosts have received much less attention. Treatment of Arabidopsis thaliana with the nonpathogenic bacterium Paenibacillus alvei K165 was shown previously to protect against Verticillium dahliae by triggering induced sy...
متن کاملNegative control of Strictisidine synthase like-7 gene on salt stress resistance in Arabidopsis thaliana
Strictosidine synthase-like (SSL) is a group of gene families in the Arabidopsis genome, which whose orthologues in other plants are key enzymes in mono-terpenoid indole-alkaloid biosynthesis pathway. The SSL7 is upregulated upon treatments of Arabidopsis plants with signaling molecules such as SA, methyl jasmonate and ethylene. To find the functional role of the gene, a T-DNA-mediated knockout...
متن کاملThe Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence.
Plants coordinate and tightly regulate pathogen defense by the mostly antagonistic salicylate (SA)- and jasmonate (JA)-mediated signaling pathways. Here, we show that the previously uncharacterized glucosyltransferase UGT76B1 is a novel player in this SA-JA signaling crosstalk. UGT76B1 was selected as the top stress-induced isoform among all 122 members of the Arabidopsis thaliana UGT family. L...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 15 شماره
صفحات -
تاریخ انتشار 2000